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For 0 < q < 1 define the symmetric q-linear operator acting on a suitable function
f(x) by df(x)=f(q1/2x)−f(q−1/2x). The q-linear initial value problem

df(x)
dx =

lf(x), f(0)=1, has two entire functions Cq(z) and Sq(z) as linearly independent
solutions. The functions Cq(z) and Sq(z) are orthogonal on a discrete set. We con-
sider Fourier expansions in these functions and derive analytic bounds on the roots
of Sq(z). © 2001 Academic Press

1. INTRODUCTION

Let f(x) be a function defined for −. < x <. and let 0 < q < 1. The
symmetric q-difference operator is defined by

df(x)=f(q1/2x)−f(q−1/2x). (1.1)

The operator defined in (1.1) can be viewed as the ‘‘q-linear’’ analog of
the operator studied in [2]. From (1.1) it is obvious that

df(x)
dx

=
f(q1/2x)−f(q−1/2x)

x(q1/2−q−1/2)
. (1.2)

There is a critical relation between this difference operator and the
q-integral. The q-integral is defined by

F
a

0
f(x) dqx=C

.

k=0
f(aqk) aqk(1−q), (1.3)



and

F
b

a
f(x) dqx=F

b

0
f(x) dqx−F

a

0
f(x) dqx. (1.4)

From (1.2) and (1.4) it follows that

F
1

−1

dg(x)
dx

dqx=q1/2{[g(q−1/2)−g(−q−1/2)]−[g(0+)−g(0−)]}. (1.5)

The classical exponential function elx is a solution of the initial value
problem

fŒ(x)=lf(x), f(0)=1; (1.6)

the trigonometric functions are then obtained from the real and imaginary
parts of e ilx. In this paper we will consider a difference analog of (1.6) using
the symmetric q-difference operator defined above. We will then define an
analog of the classical exponential function and study Fourier expansions
in series of ‘‘q-linear trigonometric functions.’’ We will find that these dif-
ference analogs of sine and cosine are orthogonal in a discrete set.

Throughout this paper we will follow the notation used in [3] which has
now become standard.

2. THE q-LINEAR SINE AND COSINE

It is possible to derive the functions to be discussed by taking appro-
priate limits in a general approach given in [9]. However, we judge it best
here to follow M. Rahman [8] and derive them directly. We begin by
considering the initial value problem

df(x)
dx

=lf(x), f(0)=1. (2.1)

If we presume an analytic solution of (2.1), say

f(x)=C
.

n=0
anxn,

then we find from (2.1) that

an=
ln(1−q)nqn2 − n/4

(q; q)n
, n=0, 1, 2, ... .
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On the basis of these calculations and because the initial value problem
(2.1) is a q-difference analog of the differential initial value problem
satisfied by exp lz, we define

exp
q

[l(1−q) z]=C
.

n=0

[l(1−q) z]nq (n2 − n)/4

(q; q)n
. (2.2)

We then define the q-linear sine and cosine, Sq(z) and Cq(z), by

exp
q

iz q Cq(z)+iSq(z).

From (2.2) we get

Cq(z)=C
.

n=0

(−1)nqn[n − (1/2)]z2n

(q; q2; q2)n
, (2.3)

Sq(z)=
z

1−q
C
.

n=0

(−1)nqn[n+(1/2)]z2n

(q2, q3; q2)n
. (2.4)

The notation (a, b; q)n used in (2.3) and (2.4) means (a; q)n (b; q)n.
As a consequence of (2.1) we have

dCq(wz)
dz

=−
w

1−q
Sq(wz) (2.5)

dSq(wz)
dz

=
w

1−q
Cq(wz). (2.6)

From (2.5) and (2.6) it follows that both Sq(wz) and Cq(wz) satisfy the
second order equation

d

dz
1du
dz
2+ w2

(1−q)2 u=0. (2.7)

3. RELATION WITH q-BESSEL FUNCTIONS AND
q-HYPERGEOMETRIC SERIES

Cq(z) and Sq(z) can be written in q-hypergeometric notation as

Cq(z)=1f1
R0
q
; q2, q1/2z2S , (3.1)

Sq(z)=
z

1−q 1f1
R 0
q3 ; q

2, q3/2z2S . (3.2)
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The functions Cq(z) and Sq(z) are related to one of the three known
q-analogues of the classical Bessel functions. This is known as the Third
Jackson q-Bessel function and as the Hahn–Exton q-Bessel function [4, 5,
10] and is defined as

J (1.3)
n (z; q) q

(qn+1; q).
(q; q).

zn1f1
R 0
qn+1 ; q, qz

2S . (3.3)

Thus, we have

Cq(z)=q−3/8 (q
2; q2).

(q; q2).
z1/2J (1.3)

−1/2(q
−3/4z; q2), (3.4)

Sq(z)=q1/8 (q
2; q2).

(q; q2).
z1/2J (1.3)

1/2 (q−1/4z; q2). (3.5)

There is a simple transformation that will be critical further on. It is

(c; q). 1f1
R0
c
; q, zS=(z; q). 1f1

R0
z
; q, cS . (3.6)

Thus from (3.1) and (3.2) applying (3.6) we get

Sq(z)=
z

1−q
(q3/2z2; q2).
(q3; q2).

1f1
R 0
q3/2z2 ; q

2, q3S , (3.7)

Cq(z)=
(q1/2z2; q2).

(q; q2).
1f1
R 0
q1/2z2 ; q

2, qS . (3.8)

It is known that the q-Bessel functions J (1.3)
n (x; q) have only real roots and

that the roots are simple. Thus the roots of Cq(z) and Sq(z) are real and
simple. Also, since Cq(z) and Sq(z) are respectively even and odd, it follows
that the roots of Cq(z) and Sq(z) are symmetric. We will denote the positive
roots of Sq(z) by w1 < w2 < w3 < · · · . Further, the functions Cq(z) and
Sq(z) are entire of order zero.

4. ORTHOGONALITY

Suppose that u1(z) and u2(z) are solutions of the second order difference
equation

d

dz
1du
dz
2+l1, ui=0, i=1, 2, l1 ] l2. (4.1)
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Then we have

(l1 −l2) u1(z) u2(z)=u1(z)
d

dz
1du2(z)
dz
2−u2(z)

d

dz
1du1(z)
dz
2 . (4.2)

Define the q-Wronskian by

W(u1(z), u2(z))=u1(q−1/2z)
du2(z)
dz

−u2(q−1/2z)
d

dz
u1(z). (4.3)

Using (4.3), (4.2) may be written as

(l1 −l2) u1(z) u2(z)=
d

dz
(W(u1(z), u2(z)). (4.4)

Computing the q-integral of (4.4) and using (1.5) gives

(l1 −l2) F
1

−1
u1(z) u2(z) dqz

=q1/2{W(u1(q−1/2), u2(q−1/2))−W(u1(−q−1/2), u2(−q−1/2))}

−q1/2{W(u1(0+), u2(0+))−W(u, (0−), u2(0−))}. (4.5)

In particular, suppose we take in (4.5)

u1(z)=Cq(q1/2w1z), u2(z)=Sq(qw2z).

Then the right side of (4.5) vanishes because the integrand in (4.5) is an odd
function. If, again, we make the choice u1(z)=Cq(q1/2w, z), u2(z)=
Cq(q1/2w2z), then (4.5) becomes

(w1 −w2) F
1

−1
Cq(q1/2w1z) Cq(q1/2w2z) dqz

=
2q

1−q
[w1Cq(q−1/2w2) Sq(w1)−w2Cq(q−1/2w1) Sq(w2)]. (4.6)

Last, if we choose u1(z)=Sq(qw1z), u2(z)=Sq(qw2z) then (4.5) becomes

(w1 −w2) F
1

−1
Sq(qw1z) Sq(qw2z) dqz

=
2q3/2

1−q
[w2Cq(q1/2w2) Sq(w1)−w1Cq(q1/2w1) Sq(w2)]. (4.7)
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From the right sides of (4.6) and (4.7) it is clear that both integrals vanish if
w1 and w2 are taken to be roots of Sq(z). A calculation with L’Hopital’s
rule gives the value of the integrals in (4.6) and (4.7) when w1=w2. We
then have the following orthogonality relation.

Theorem 4.1. Let w and wŒ be roots of Sq(z). Then

F
1

−1
Cq(q1/2wx) Cq(q1/2wŒx) dqx=˛

0, if w ] wŒ

2, if w=wŒ=0

m(w), if w=wŒ ] 0

F
1

−1
Sq(qwx) Sq(qwŒx) dqx=˛

0 if w ] wŒ or w=wŒ=0

q−1/2m(w) if w=wŒ ] 0,

where m(w)=(1−q) Cq(q1/2w)(“/“w) Sq(w).

An analog of the trigonometric identity

sin2x+cos2x=1

may be proved for Sq(z) and Cq(z). We begin by noting that if f(x) is con-
tinuous at x=0 and if df(x)=0 for −. < x <. then f(x) is constant.
This follows from the fact that df(x)=0 for −. < x <. implies
that f(x)=f(qx) for −. < x <.. By iteration, f(x)=f(qnx) for n=
0, 1, ... . Taking a limit on n gives f(x)=f(0) for −. < x <..

Calculating the Wronskian defined by (4.3) for the functions u1(z)=
Sq(z), u2=Cq(z) we find

W(Sq(z), Cq(z))=
1

q−1
(Sq(q−1/2z) Sq(z)+Cq(q−1/2z) Cq(z)).

Then calculating the difference we get dW(Sq(z), Cq(z)) — 0. Thus we may
conclude that

W(Sq(z), Cq(z))=W(Sq(0), Cq(0))=
1

q−1
,

that is,

Sq(q−1/2z) Sq(z)+Cq(q−1/2z) Cq(z)=1. (4.8)
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5. THE ROOTS OF Sq(z)

In this section we will derive bounds on the positive roots wn of Sq(z). In
order to obtain bounds valid for all the positive roots wn, n=1, 2, ..., we
will find it necessary to restrict the range of q. We begin with a preliminary
lemma.

Lemma 5.1. Define an (q) by

an (q)=
log 51− q2n+1

1−q2n
6

2 log q
, n=1, 2, ... .

(i) If 0 < q < 1 and (1−q2)2−q3 > 0 then 0 < an (q) < 1, n=
1, 2, 3, ... .

(ii) (1−q2)2−q3 has a simple root b0 in 0 < q < 1 and b0 % 0.67104.
Thus (1−q2)2−q3 > 0 for 0 < q < b0, and hence 0 < an (q) < 1 for n=
1, 2, ..., if 0 < q < b0.

(iii) If 0 < q < b0 then an (q)=0(q2n) as nQ..

Proof. (i) 0 < an (q) requires only that

0 < 1−
q2n+1

1−q2n .

This holds if 1−q2n−q2n+1 > 0. However, for n=1, 2, ..., we have that 1−
q2n−q2n+1 \ 1−q2−q3 > 0 if 0 < q < 3/4 and certainly then 0 < an (q) if
0 < q < b0. To prove that an (q) < 1 for n=1, 2, ..., 0 < q < b0, we must
prove

1−
q2n+1

1−q2n > q2, n=1, 2, ..., 0 < q < b0,

or, that is, 1−q2+q2n(q2−q−1) > 0. But, for n=1, 2, ... we have

1−q2+q2n(q2−q−1) > 1−q2+q2(q2−q−1)=(1−q2)2−q3 > 0

for 0 < q < b0.
(ii) This is an elementary calculus exercise.
(iii) This is a consequence of the Taylor expansion of an (q). L

Lemma 5.2. If (1−q2)2 > q3, then sgn[Sq(q−m+1/4)]=(−1)m, m=
0, 1, 2, ... .
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Proof. Set z=q−m+1/4 in (3.7) to get

(q; q2). Sq(q−m+1/4)
q−m+1/4 =C

.

k=0

(−1)k (q−2m+2k+2; q2). qk(k+2)

(q2; q2)k
. (5.1)

Since (q−2m+2k+2; q2).=0 for k [ m−1 we have from (5.1)

(q; q2). qm − 1/4Sq(q−m+1/4)= C
.

k=m

(−1)k (q−2m+2k+2; q2). qk(k+2)

(q2; q2)k
.

This last series can be written as

(−1)m C
.

j=0

(−1) j (q2j+2; q2). q (m+j)(m+j+2)

(q2; q2)m+j
q (−1)m C

.

j=0
(−1) j Aj.

We will now prove that Aj+1 < Aj if q3 < (1−q2)2. An easy calculation shows
that Aj+1 < Aj if and only if

q (2m+2j+3) < (1−q2m+2j+2)(1−q2j+2). (5.2)

When j=0, (5.2) becomes

q2m+3 < (1−q2m+2)(1−q2), (5.3)

which is true for m=0, 1, ..., if q3 < (1−q2)2. Since (5.3) holds for
q3 < (1−q2)2, we have

q2m+2j+3 < q2m+3 < (1−q2m+2)(1−q2) < (1−q2m+2j+2) · (1−q2j+2).

Since Aj+1 < Aj, j=0, 1, ..., we have

sgn(−1)m C
.

j=0
(−1) j Aj=(−1)m

if q3 < (1−q2)2, that is, for 0 < q < b0. This proves Lemma 5.2. L

Lemma 5.2 says that Sq(z) has an odd number of roots in each interval
(q−m+1, q−m), m=0, 1, ... . The next lemma refines this statement.

Lemma 5.3. If (1−q2)2 > q3, then

sgn Sq(q−m+(1/4)+am(q))=(−1)m − 1, m=0, 1, ... .

FOURIER SERIES ON A q-LINEAR GRID 141



Proof. For convenience write am for am(q). In (3.7) set z=q−m+am+1/4.
Then

Sq(q−m+am+1/4)=C
m − 2

n=0

(−1)nqn(n+2)(q2+2n − 2m+2am; q2).
(q2; q2)n

+ C
.

n=m − 1

(−1)nqn(n+2)(q2+2n − 2m+2am; q2).
(q2; q2)n

. (5.4)

Denote the finite sum in (5.3) by S1 and the infinite sum by S2. In S1 for
0 [ n [ m−2 and 0 < am < 1 we have

sgn(q2+2n − 2m+2am; q2).=(−1)m − 1 − n.

Thus sgn S1=(−1)m − 1. In S2 the change of variable k=n−m+1 yields

S2=(−1)m − 1 C
.

k=0
(−1)k Ak ,

where Ak is given by

Ak=
q (k+m − 1)(k+m+2)(q2k+2am; q2).

(q2; q2)k+m − 1
.

Clearly Ak > 0. We will prove that Ak+1 < Ak, k=0, 1, ..., and thus
;.

k=0 (−1)k Ak > 0.
A short calculation shows that Ak+1 < Ak reduces to the inequality

q2k+2m+1 < (1−q2k+2am)(1−q2k+2m). (5.5)

We establish (5.5) by using the following string of inequalities.

q2k+2m+1 < q2m+1=(1−q2am)(1−q2m) < (1−q2am+2k)(1−q2k+2m).

Thus (5.5) holds and we have that

sgn S2=(−1)m − 1=sgn S1.

This proves the lemma. L

Lemma 5.2 and Lemma 5.3 imply that Sq(z) has an odd number of roots
in each interval (q−m+am(q)+1/4, q−m+1/4). We will now prove Theorem 5.1
which states that there is only one root in each such interval and that there
are no other positive roots.
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Theorem 5.1. Let 0 < q < b0 where b0 % .67104 is the root of (1−q2)2

−q3=0 in 0 < q < 1. If w1 < w2 < · · · are the positive roots of Sq(z) then

wk=q−k+1/4+Ek, 0 < Ek < ak(q), k=1, 2, ..., (5.6)

where ak(q) is as in Lemma 5.1. There are no positive roots other than those
of the form stated in (5.6).

Proof. After Lemmas 5.2 and 5.3 it is known that Sq(z) has roots of the
form (5.6). We need to prove that there are no other positive roots. To
accomplish this we will apply a formula of Jensen [1]. Define

F(z)=
(1−q) Sq(z)

z
.

From (2.4) we have

F(q−m − 1/4e ih)=
q−m2

(−1)m e2imh

(q2; q2)m (q3; q2)m
C
.

k=−m

(−1)kqk2
e2ikh

(q2m+2; q2)k (q2m+3; q2)k
. (5.7)

The roots of F(z) by Lemma 5.2 and 5.3 must include ±wk=±q−k+(1/4)+Ek,
k=1, ..., m. We want to prove that these are the only roots in |z| < q−m − 1/4.
Suppose there are other roots ±lk, k=1, ..., Pm, with lk > 0. Jensen’s
formula then gives (F(0)=1)

2 C
m

k=1
log

q−m − 1/4

wk
+2 C

Pm

k=1
log

q−m − 1/4

lk
=

1
2p

F
2p

0
log |F(q−m − 1/4e ih)| dh. (5.8)

Write wk=q−k − 1/4+Ek in the left side of (5.8) to get

2 C
m

k=1
log

q−m − 1/4

wk
+2 C

Pm

k=1
log

q−m − 1/4

lk

=−m2 log q−2(log q) C
m

k=1
Ek+2 C

Pm

k=1
log

q−m − 1/4

lk
. (5.9)

Also, from (5.7)

log |F(q−m − 1/4e ih)|=−m2 log q− log(q2; q2)m − log(q3; q2)m

+log : C
.

k=−m

(−1)kqk2
e2ikh

(q2m+2; q2)k (q2m+3; q2)k

: . (5.10)
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Note that, for the sum in (5.10),

lim
m Q.

C
.

k=−m

(−1)kqk2
e2ikh

(q2m+2; q2)k (q2m+3; q2)k

= C
.

k=−.
(−1)kqk2

e2ikh=(q2, qe2ih, qe−2ih; q2).. (5.11)

The last equality is an application of the Jacobi triple product identity [3].
The limit in (5.11) can be shown to be uniform in h. Because of (5.11) we
can write

lim
m Q.

1
2p

F
2p

0
log : C

.

k=−m

(−1)k qk2
e2ikh

(q2m+2; q2)k (q2m+3; q2)k

: dh

=
1
2p

F
2p

0
log |(q2, qe2ih, qe−2ih; q2). | dh.

Now,

1
2p

F
2p

0
log |(q2, qe2ih, qe−2ih; q2). | dh

=log(q2; q2).+C
.

j=0

1
2p

F
2p

0
log |1−q2j+1e2ih| dh

+C
.

j=0

1
2p

F
2p

0
log |1−q2j+1e−2ih| dh.

We applied uniform convergence to exchange integral and sum above. But
all these integrals above vanish (the mean value theorem for harmonic
functions). Hence

1
2p

F
2p

0
log |(q2, qe2ih, qe−2ih; q2). | dh=log(q2; q2).. (5.12)

Using (5.12) and (5.11) in (5.10) we have

1
2p

F
2p

0
log |F(q−m − 1/4e ih)| dh=−m2 log q− log(q3; q2).+o(1) (5.13)

as mQ..
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TABLE 1

k q−k+(1/4)+ak wk q−k+1/4

1 1.535259783865635 1.541670759157614 1.681792830507429
2 3.307050783152858 3.360658583239728 3.363585661014858
3 6.700423019986493 6.727168071457452 6.727171322029716
4 13.441145639761449 13.45434264385496 13.454342644059432
5 26.902108559366568 26.90868528811886 26.908685288118865
6 53.814084922180745 53.81737057623774 53.817370576237730
7 107.633098663883582 107.6347411524754 107.634741152475461
8 215.268661102948532 215.269482304951 215.269482304950923
9 430.538554014186999 430.5389646099018 430.538964609901846

Equating (5.13) and (5.9) gives

−2(log q) C
m

k=1
Ek+2 C

Pm

k=1
log

q−m − 1/4

lk
+log(q3; q2).=o(1)

as mQ.. (5.14)

However, because Ek=O(q2k), we have that ;.

k=1 Ek <.. Also,

C
Pm

k=1
log

q−m − 1/4

lk
> log

q−m − 1/4

l1
Q..

Thus the only way that (5.14) can hold is if the sum involving lk is empty.
This proves that there are no other roots besides the wk. L

The result of Lemmas 5.2 and 5.3 and Theorem 5.4 can be stated as

Theorem 5.2. If 0 < q < b0 where b0 is the unique root of (1−q2)2−q3

=0, 0 < q < 1, then the roots of Sq(z) satisfy the inequality

q−k+ak+1/4 < wk < q−k+1/4, k=1, 2, ... . (5.15)

The accuracy of the bounds in (5.15) is illustrated in Table 1 by the
numerical calculations of the first nine roots of Sq(z) for q=.5 accurate to
15 places.

Remark 1. The restriction q3 < (1−q2)2, or that is, 0 < q < b0 in
Lemmas 5.2 and 5.3 and Theorem 5.2 are necessary to obtain the repre-
sentation

wk=q−k+(1/4)+Ek, 0 < Ek < ak(q)
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for every integer value k=1, 2, ... . It is possible to re-write these proofs
and get a similar result valid for large values of k and all 0 < q < 1. That is,
for any q, 0 < q < 1, K exists such that if k \K then wk=q−k+(1/4)+Ek,
0 < Ek < ak(q).

Remark 2. Discarding the empty sum in (5.14) we have

C
m

k=1
Ek=

log(q3; q2).
2 log(1/q)

+o(1).

Taking the limit as mQ. gives

C
.

k=1
Ek=

log(q3; q2).
2 log(1/q)

.

An estimate on the growth of Em is easily obtained since 0 < Em < am, and
by Taylor’s formula:

am=
log 11− q2m+1

1−q2m
2

2 log q
=−

q2m+1

2(1−q2m) log q
31+h

2
q2m+1

1−q2m
4

where 0 < h < (1−(q2m+1/1−q2m))−1. For 0 < q < b0=.67104... . This
gives 0 < Em < 3.18q2m+1. This last bound on Em immediately implies that

wm=q−m+1/4+Em=q−m+1/4+O(qm).

6. THE FOURIER COEFFICIENTS

On the basis of the orthogonality established in Theorem 4.1 we may
consider formal Fourier expansions of the form

f(x) ’
a0

2
+C

.

k=1
akCq(q1/2wkx)+bkSq(qwkx),

with

ak=
1
mk

F
1

−1
f(t) Cq(q1/2wkt) dqt,

bk=
1
mk

F
1

−1
f(t) Sq(qwkt) dqt,

where mk=(1−q) Cq(q1/2wk) S
−

q(wk).
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It is clear that the behavior of mk is critical to an analysis of ak and bk

and to questions of convergence. In this section we will give asymptotic
information about mk by estimating S −q(wk) and by showing that Cq(q1/2wk)
can be eliminated.

Theorem 6.1.

S −q(wk)=
2

1−q
q−(k − 1/2 − Ek)2

Sk ,

where lim infk Q. |Sk | > 0 for 0 < q [ b0. Here b0 is the unique root in (0, 1)
of (1−q2)2−q3=0, b0 5 .67104.

Proof. Computing the derivative of the infinite series for Sq(z) we find

(1−q) S −q(wk)=2 C
.

n=0

(−1)n nqn(n+1/2)w2n
k

(q2, q3; q2)n
.

Writing wk=q−k+1/4+Ek we find (1−q) S −q(wk)=q−(k − 1/2 − Ek)2
Sk where

Sk=C
.

n=0

(−1)n nq (n − k+1/2+Ek)2

(q2, q3; q2)n
.

We need to prove that lim infk Q. |Su | > 0. Making a change of variable
m=n−k in the series for Sk we get

(−1)k Sk= C
.

m=−k

(−1)m mq (m+1/2+Ek)2

(q2, q3; q2)m
.

Set

Fm(k)=
(−1)m mq(m+1/2+Ek)2

(q2, q3; q2)m

and let P be a positive integer. Then for k > 2P+2,

|Sk | \ : C
2P

m=−2P − 1
Fm(k):− C

−2P − 2

m=−k
|Fm(k)|− C

.

m=2P+1
|Fm(k)|. (6.1)

We now begin a sequence of tedious calculations. Denote the sums on the
right side of (6.1) by G1, G2, G3, respectively. We need to require that P be
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large enough so that if k > 2P+z then 1/2− Ek > 0 (recall that Ek Q 0). For
G2 we have

G2= C
−2P − 2

m=−k

|m| q (m+Ek+1/2)2

(q2, q3; q2)m
<

1
(q2; q).

C
.

m=2P+2
mq(m − Ek − 1/2)2

<
1

(q2; q).
C
.

m=2P+2
mq(m − 1)2

=
1

(q2; q).
C
.

m=0
(m+2P+2) q (m+2P+1)2

<
q (2P+1)2

(q2; q).
C
.

m=0
(m+2p+2) qm(4P+2)

=
q (2P+1)2

(q2; q).

[2P+2−(2P+1) q4P+2]
(1−q4P+2)2 .

For G3 we have

G3= C
.

m=2P+1
|Fm(k)| <

1
(q2; q).

C
.

m=2P+1
mq (m+Ek+1/2)2

<
1

(q2; q).
C
.

m=2P+1
mqm2

<
q (2P+1)2

(q2; q).
C
.

m=0
(m+2P+1) qm(4P+2)

=
q (2P+1)2

(q2; q).

2P+1−2Pq4P+2

(1−q4P+2)2 .

Last, to estimate G1, we have

G1= C
2P

m=−2P − 1
Fm(k)= C

2P

m=−2P − 1

(−1)m mq(m+Ek+1/2)2

(q2, q3; q2)m+k
,

and

lim
k Q.

C
2P

m=−2P − 1
Fm(k)= C

2P

m=−2P − 1

(−1)m mq (m+1/2)2

(q2, q3; q2).
.

Since

C
2P

m=−2P − 1
(−1)m mq (m+1/2)2

=q1/4 C
2P

j=0
(−1) j (2j+1) q j(j+1)

we have

G1=
q 1/4

(q2; q).
: C

2P

j=0
(−1) j (2j+1) q j(j+1):+o(1) as kQ..
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Combining the estimates for G1, G2, G3, we have

Sk \
1

(q2; q).
3q1/4 : C

2P

j=0
(−1) j (2j+1) q j(j+1):

−
q (2P+1)2

(1−q4P+2)2 [4P+3−(4P+1) q4P+2]4+o(1) as kQ.. (6.2)

From (6.2) we get

J
k Q.

Sk \
1

(q2; q).
3q1/4 : C

2P

j=0
(−1) j (2j+1) q j(j+1):

−
q (2P+1)2

1−q4P+2 [4P+3−(4P+1) q4P+2]4 .

Taking the limit as PQ., we have

J
k Q.

Sk \
q1/4

(q2; q).
: C
.

j=0
(−1) j (2j+1) q j(j+1): .

Now it is necessary to prove that

C
.

j=0
(−1) j (2j+1) q j(j+1) ] 0 for 0 < q [ b0.

Write Aj(q)=(2j+1) q j(j+1). Then Aj+1(q) < Aj(q) for j=0, 1, ... if and
only if

q2(j+1)(2j+3)−2j−1 < 0, j=0, 1, ... . (6.3)

Inequality (6.3) holds for 0 < q < b0 if it holds for q=b0. It is easy to
check that (6.3) holds if q=b0 for j=1, 2, ... . Thus if we write

C
.

j=0
(−1) j (2j+1) q j(j+1)=1−3q2+5q6−7q12+C

.

j=4
(−1) j Aj(q) (6.4)

then the infinite series on the right side of (6.4) is positive for 0 < q [ b0

because Aj+1(q) < Aj(q). The polynomial 1−3q2+5q6−7q12 is positive for
0 < q [ b0. We can now conclude that J k Q. Sk > 0. (Actually we have
J k Q. Sk >;5

j=0 Aj(q) > 0.) L

Remark. The condition 0 < q [ b0 in Theorem 6.1 is not necessary. For
example, if P=10 in (6.2) MATHEMATICA shows that the right side of
(6.2) is positive for 0 < q < .9. Throughout this paper, however, we have
tried to restrict ourselves, as much as possible, to arguments that avoid
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computer assisted proofs. It is certainly the case that Theorem 6.1 remains
true for 0 < q < 1 but we have no analytic proof.

Theorem 6.1 provides information about only one of the factors in mk,
the factor that remains is Cq(q1/2wk). It is not necessary to estimate this
factor because the following identities allow us to eliminate it. The proofs
are done by induction using the difference identities (2.5) and (2.6). Because
the proofs are lengthy, we omit them.

Theorem 6.2. Define Pn (z) and Qn (z) by

Pn (z)=C
n

j=0

(−1) j q j(j+1)(q1+n − j; q)2j+1 z j

(q; q)2j+1

Qn (z)=C
n

j=0

(−1) j q j(j − 1/2)(q1+n − j; q)2j z j

(q; q)2j
.

Then, for n=0, 1, 2, ...

Sq(qn+1wk)=Sq(qwk) Pn (w
2
k) (6.5)

Cq(qn+1/2wk)=Cq(q1/2wk) Qn (w
2
k). (6.6)

The identities (6.5) and (6.6) can be used to eliminate the factor
Cq(q1/2wk) that occurs in mk. In effect, the factor divides out with a similar
factor in ak and bk. To see this, we have

ak=
1
mk

F
1

−1
f(t) Cq(q1/2wkt) dqt

=
1

S −q(wk) Cq(q1/2wk)
C
.

j=0
[f(q j)+f(−q j)] Cq(q j+1/2wk) q j.

Now use (6.6) in the last expression to get

ak=
1

S −q(wk)
C
.

j=0
[f(q j)+f(−q j)] Qj(w

2
k) q

j. (6.7)

Similarly, for bk by using (6.5) and the identity Sq(qwk)=−wkCq(q1/2wk)
we have

bk=
−wk

S −q(wk)
C
.

j=0
[f(q j)−f(−q j)] Pj(w

2
k) q

j. (6.8)

While (6.7) and (6.8) have the disadvantage of not being expressible as
q-integrals, they do show that the factor Cq(q1/2wk) in mk may be divided out.
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7. COMPLETENESS

An orthogonal system {fn (x)} is said to be complete if

F
b

a
f(x) jn (x) dx=0, n=0, 1, ...

implies that f(x) is the zero function. Completeness is a fundamental
property because it ensures uniqueness of Fourier coefficients and it also
ensures that if

f(x) ’ C
.

h=0
anjn (x),

and the series converges uniformly, then

f(x)=C
.

n=0
anjn (x).

In this section we will prove completeness of the system Cq(q1/2wkz),
Sq(qwkz) by applying a theorem of Phragmen–Lindelöf type. This theorem
uses the concept of the order of a holomorphic function in a sector. Define
Mf (r, a, b)=max a [ h [ b |f(re ih)|. Then the order r of f(z) in the sector
a [ h [ b is

r=O
r Q.

ln+ ln+Mf(r, a, b)
ln r

.

When the sector is the complex plane and f(z) is entire, then p is simply
the order of the entire function. The theorem to be applied is

Theorem 7.1 [6]. Let the function f(z) be holomorphic inside an angle
of opening p/a and continuous on the boundary. Assume that on the sides of
the angle |f(z)| [M and that the order r of the function is less than a. Then
|f(z)| [M throughout the angle.

Lemma 7.1. Let g(w) be bounded for w=±qk, k=0, 1, ... . Let f(z)=
Cq(q1/2z)+iSq(qz) and define I(w) by

I(w)=F
1

−1
g(z) f(wz) dqz. (7.1)

Then I(w) is entire and has order zero.
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Proof. The series expansion for I(w) is

I(w)=C
.

k=0
[g(qk)+g(−qk)] Cq(qk+1/2w) qk(1−q

+i C
.

k=0
[g(qk)−g(−qk)] Sq(qk+1w) qk(1−q).) (7.2)

Given any disk |w| < R, the functions Cq(w) and Sq(w) are bounded in
|w| < R, say that |Cq(w)| < M(R), |Sq(w)| < M(R). If |g(±qk)| [ B, k=
0, 1, ... then for |w| < R, (7.2) gives

|I(w)| [ 4BM(R)(1−q) C
.

k=0
qk.

Thus the series in (7.2) converges uniformly in any disk |w| < R. Conse-
quently I(w) is entire. Next observe that

max
|w|=r

|I(w)| [ {max
|w|=r

|Cq(q1/2w)|+max
|w|=r

|Sq(qw)|} · 2B.

That is,

max
|w|=r

|I(w)| [ 4B max
|w|=r

{|Cq(q1/2w)|, |Sq(qw)|},

and since

O
r Q.

ln ln max
|w|=r

|Cq(q1/2w)|

ln r
=O

r Q.

ln ln max
|w|=r

|Sq(qw)|

ln r
=0,

we have that

O
r Q.

ln ln max
|w|=r

|I(w)|

ln r
=0

and I(w) has order 0.

Lemma 7.2. Define h(w)=I(w)/Sq(w)). If I(w) vanishes at the roots of
Sq(w) then h(w) is entire of order zero.

Proof. That h(w) is entire follows from Lemma 7.1 and the fact that
I(w) vanishes at the roots of Sq(w). The statement about order follows
from Hademard’s factorization theorem for entire functions [6].
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Hadamard’s theorem states that an entire function f(z) of order r can be
written as

f(z)=zm[exp k(z)] E(z; f),

where m is the order of the zero at z=0, k(z) is a polynomial of degree less
than or equal to r, and E(z; f) is the canonical product of the roots of
f(z). Since both I(w) and Sq(w) have order zero and since the roots of
Sq(w) are also roots of I(w) we have

I(w)
Sq(w)

=zm − 1Eg(z),

where m is the order of the root of I(w) at z=0 and Eg(z) is a canonical
product of roots of I(w) that are not roots of Sq(w) (if any). Thus
I(w)/Sq(w) has order zero.

Theorem 7.2. Let f(wkz)=Cq(q1/2wkz)+iSq(qwkz) where the wk, w0=
0 < w1 < w2 < · · · are the roots of Sq(z). Suppose that

F
1

−1
g(z) f(wkz) dqz=0, k=0, 1, ... ,

where g(z) is bounded on z=±qk, k=0, 1, ... . Then g(±qk)=0, k=
0, 1, 2, ... .

Proof. The function f(z) is entire of order 0. Take a=1 in
Theorem 7.1 and take the angle to be the right half plane. The sides of the
angle are then the imaginary axis. Consider the function

h(w)=
>1

−1 g(z) f(wz) dqz
Sq(w)

. (7.3)

h(w) is entire, of order zero by Lemmas 7.1 and 7.2. By Theorem 7.1, if
|h(w)| < M for w on the imaginary axis, then |h(w)| < M for Re w > 0.

We will prove that h(w) is bounded on the imaginary axis. First write
(2.6) as

Cq(z)=
q1/2[Sq(q−1/2z)−Sq(q1/2z)]

z
. (7.4)

Setting w=iy in the integrand of (7.1) and using the identity (7.4) gives

f(iyz)
Sq(iy)

=
Sq(iyz)−(1+yz) Sq(qiyz)

iyzSq(iy)
. (7.5)
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Now note that if a, t are real with |a| [ 1 then

|Sq(iat)| [ |a| |Sq(it)|. (7.6)

The variable z that appears in the q-integral in (7.1) and in (7.4) takes on
values ±qk, 0 < q < 1, so that |z| [ 1. Then using (7.6) in (7.5) gives

: f(iyz)
Sq(iy)
: [ (1+|1+yz|)

|y|
. (7.7)

Since h(w) is analytic in |w| [ 1, it must be bounded there, say |h(w)| < M.
We can then assume that y > 1 in (7.7). Since |z| [ 1, the right side of (7.7)
is bounded for |y| > 1, since (1+|1+yz|/|y|) [ (2/|y|)+|z| [ (2/|y|)+1 < 3.

Then |h(iy)| < M if |y| [ 1, while if y > 1 then

|h(iy)| [ F
1

−1
|g(z)|

|f(iyz)|
|Sq(iy)|

dqz < 6B,

where B=lub |g(z)|, z=±qk, k=0, 1, ... . h(w) is thus bounded on the
imaginary axis and, by Theorem 7.1, h(w) is bounded for Re w \ 0.
Replacing w by −w gives the same result for Re w [ 0. Thus h(w) is a
bounded entire function, and by Liouville’s Theorem h(w) is constant.

Next we prove that if h(w) — c, then c=0. This follows immediately with
the observation that if w is real then h(iw) is real while h(w) is complex.

We now have that

F
1

−1
g(z) f(wz) dqz — 0, (7.8)

and we must prove that g(q j)=0. Expand f(wz) in power series using the
power series for Cq(z) and Sq(z) to get

F
1

−1
g(z) f(wz) dqz

=C
.

h=0
C
.

k=0

[g(qk)+g(−qk)](−1)nq (2n+1) kqn(n+2)w2n

(q, q2; q2)n

+
i

1−q
C
.

n=0
C
.

k=0

[g(qk)−g(−qk)](−1)nq (2n+2) kqn2+3n+1w2n+1

(q, q3; q2)n
.
(7.9)

Since (7.7) vanishes identically in w the identity theorem for analytic
functions gives

C
.

k=0
[g(qk)+g(−qk)] q (2n+1) k=0, n=0, 1, 2, ... (7.10)
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and

C
.

k=0
[g(qk)−g(−qk)] q (2n+2) k=0, n=0, 1, 2, ... . (7.11)

Now (7.5) and (2.6) give g(qk)=g(−qk)=0, k=0, 1, 2, ... . This completes
the proof.

8. EXAMPLES

In this final section we give two simple examples of q-linear Fourier
series.

(a) f(x)=x. This function is odd so the series contains only q-sine
terms. We have

Sq(x; f)=−
2
q

C
.

k=1

Sq(qwkx)
wkS

−

q(wk)
. (8.1)

(b) f(x)=x2. This function is even so the series contains only
q-cosine terms. We have

Sq(x; f)=
1

1+q+q2+2q−3/2(1−q2) C
.

k=1

Cq(q1/2wkx)
w2

kS
−

q(wk)
(8.2)

We will prove convergence of the series in (8.1). Set z=qwkx and wk=
q−k+(1/4)+Ek in Sq(z) to get

Sq(qwkx)=
qwkx
1−q

q−(k − (3/2) − Ek)2
C
.

n=0

(−1)nq (n − k+(3/2)+Ek)2
x2n

(q2, q3; q2)n
. (8.3)

Denote the infinite series in (8.3) by T(x, k, q). Then

|T(x, k, q)| [
1

(q2, q3; q2).
C
.

n=0
q (n − k+(3/2)+Ek)2

<
1

(q2, q3; q2).
3 C
.

n=0
q (n+3/2)2

+C
.

n=1
q (n − 3/2 − Ek)24 .
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Since 0 < Ek < 1,

C
.

n=1
q (n − (3/2) − Ek)2

< C
.

k=1
qn2 − 5n+9/4.

Thus we have, writing

A(q)=C
.

n=0
q (n+3/2)2

+C
.

n=1
qn2 − 5n+9/4,

|Sq(qwkx)| [
qwk

1−q
q−(k − 3/2 − Ek)2

A(q),

(8.4)

|x| [ 1, 0 < q [ b0.
From Theorem 7.1 we have then

2
q

|Sq(qwkx)|
wk |S −q(wk)|

=O(q2k) (8.5)

for |x| [ 1, 0 < q [ b0.
Hence the series (8.1) converges uniformly for |x| [ 1, 0 < q [ b0 and the

sum is analytic in the unit disk. By completeness, the infinite series con-
verges to f(x)=x where x=±q j, j=0, 1, ... . Then by the identity
theorem for analytic functions the series converges to x for all finite x.
Thus

x=−
2
q

C
.

k=1

Sq(qwkx)
wkS

−

q(wk)
, 0 < q [ b0. (8.6)

Remark. Equation (8.6) certainly must hold for 0 < q < 1. However
we are limited here because of the condition 0 < q [ b0 in Theorem 6.1.
A similar argument applied to the series in (7.2) establishes

x2=
1

1+q+q2+2q−3/2(1−q2) C
.

k=1

Cq(q1/2wkx)
w2

kS
−

q(wk)
.

The argument can be extended to arbitrary polynomials.
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